
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Programming in Biomolecular Computation

Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen 1

Department of Computer Science, University of Copenhagen (DIKU), Copenhagen, Denmark

Abstract

Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread
discussion about connections between biology and computation, one question seems notable by its
absence: Where are the programs? We introduce a model of computation that is evidently
programmable, by programs reminiscent of low-level computer machine code; and at the same time
biologically plausible: its functioning is defined by a single and relatively small set of chemical-like
reaction rules. Further properties: the model is stored-program: programs are the same as data,
so programs are not only executable, but are also compilable and interpretable. It is universal:
all computable functions can be computed (in natural ways and without arcane encodings of data
and algorithm); it is also uniform: new “hardware” is not needed to solve new problems; and (last
but not least) it is Turing complete in a strong sense: a universal algorithm exists, that is able to
execute any program, and is not asymptotically inefficient.
A prototype model has been implemented (for now in silico on a conventional computer). This
work opens new perspectives on just how computation may be specified at the biological level.

Keywords: biomolecular, computation, programmability, universality.

1 Biochemical universality and programming

It has been known for some time that various forms of biomolecular compu-
tation are Turing complete [7,8,10,12,25,29,32,33]. The net effect is to show
that any computable function can be computed, in some appropriate sense,
by an instance of the biological mechanism being studied. However, the ar-
guments for Turing universality we have seen are less than compelling from a
programming perspective. This paper’s purpose is to provide a better compu-
tation model where the concept of “program” is clearly visible and natural,
and in which Turing completeness is not artificial, but rather a natural part of
biomolecular computation. We begin by evaluating some established results

1 Email: {hartmann,neil,simonsen}@diku.dk

c©2010 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Hartmann and Jones and Simonsen

on biomolecular computational completeness from a programming perspective;
and then constructively provide an alternative solution. The new model seems
biologically plausible, and usable for solving a variety of problems of compu-
tational as well as biological interest. It should be noted that while our model
can support full parallelism (as often seen in biologically-inspired computing),
it is not the foci of the paper, which are completeness and universality: we
consider one program running on one, contiguous piece of data.

The central question: can program execution take place in a biolog-
ical context? Evidence for “yes” includes many analogies between biological
processes and the world of programs: program-like behavior, e.g., genes that
direct protein fabrication; “switching on” and “switching off”; processes; and
reproduction.

A clarification from the start: this paper takes a synthetic viewpoint, con-
cerned with building things as in the engineering and computer sciences. This
is in contrast to the ubiquitous analytic viewpoint common to the natural
sciences, concerned with finding out how naturally evolved things work.

The authors’ backgrounds lie in the semantics of programming languages,
compilers, and computability and complexity theory; and admittedly not bi-
ology. We focus on the synthetic question can, rather than the usual natural
scientists’ analytical question does.

Where are the programs? In existing biomolecular computation mod-
els it is very hard to see anything like a program that realises or directs
a computational process. For instance, in cellular automata the program is
expressed only in the initial cell configuration, or in the global transition func-
tion. In many biocomputation papers the authors, given a problem, cleverly
devise a biomolecular system that can solve this particular problem. How-
ever, the algorithm being implemented is hidden in the details of the system’s
construction, and hard to see, so the program or algorithm is in no sense a
“first-class citizen”. Our purpose is to fill this gap, to establish a biologically
feasible framework in which programs are first-class citizens.

2 Relation to other computational frameworks

We put our contributions in context by quickly summarising some other com-
putational completeness frameworks. Key dimensions: uniformity; pro-
grammability; efficiency; simplicity; universality; and biological plausibility.
(Not every model is discussed from every dimension, e.g., a model weak on a
dimension early in the list need not be considered for biological plausibility.)

Circuits, BDDs, finite automata. While well proven in engineering
practice, these models don’t satisfy our goal of computational completeness.
The reason: they are non-uniform and so not Turing complete. Any single

2

Hartmann and Jones and Simonsen

instance of a circuit or a BDD or a finite automaton has a control space and
memory that are both finite. Consequently, any general but unbounded com-
putational problem (e.g., multiplying two arbitrarily large integers) must be
done by choosing one among an infinite family of circuits, BDDs or automata.

The Turing machine. Strong points. Highly successful for theoretical
purposes, the Turing model is uniform; there exists a clear concept of “pro-
gram”; and the “universal Turing machine” from 1936 is the seminal example
of a self-interpreter. The Turing model has fruitfully been used to study com-
putational complexity problem classes as small as ptime and logspace.

Weak points. Turing machines do not well model computation times small
enough to be realistically interesting, e.g., near-linear time. The inbuilt “data
transport” problems due to the model’s one-dimensional tape (or tapes, on a
multi-tape variant) mean that naturally efficient algorithms may be difficult
to program on a Turing machine. E.g., a time O(n) algorithm may suffer
asymptotic slowdown when implemented on a Turing machine, e.g., forced to
run in time O(n2) because of architectural limitations. A universal Turing
machine has essentially the same problem: it typically runs quadratically
slower than the program it is simulating. Stiull greater slowdowns may occur
if one uses smaller Turing complete languages, for instance the counter or
Minsky register machines as used in [7,8,12,22].

Other computation models with an explicit concept of program.
Numerous alternatives to the Turing machine have been developed, e.g., the
Tag systems studied by Post and Minsky, and a variety of register or counter
machines. Closer to computer science are recursive functions; the λ-calculus;
functional programming languages such as lisp; and machines with randomly
addressable memories including the ram and, most relevant to our work, its
stored-program variant the rasp [19]. These models rate well on some of the
key dimensions listed above. However they are rather complex; and were
certainly not designed with biological plausibility in mind.

Cellular automata. John von Neumann’s pathbreaking work on cel-
lular automata was done in the 1940s, at around the time he also invented
today’s digital computer. In [29] computational completeness was established
by showing that any Turing machine could be simulated by a cellular au-
tomaton. Further, it was painstakingly and convincingly argued that a cel-
lular automaton could achieve self-reproduction.Von Neumann’s and subse-
quent cellular automaton models, e.g., life and Wolfram’s models[15,8,32],
have some shortcomings, though. Though recent advances have remedied the
lack of asynchronous computations [23], a second, serious drawback is the
lack of programmability: once the global transition function has been selected
(e.g., there is only one such in life) there is little more that the user of the
system can do; the only degree of freedom remaining is to choose the initial
configuration of cell states. There is no explicit concept of a program that

3

Hartmann and Jones and Simonsen

can be devised by the user. Rather, any algorithmic ideas have to be encoded
in a highly indirect manner, into either the global transition function or into
the initial cell state configuration; in a sense, the initial state is both program
and input, but in the zoo of cellular automata proven to be universal, there
seems to be no clear way to identify which parts of the initial state of the
CA corresponds to, say, a certain control structure in a program, or a specific
substructure of a data structure such as a list.

Biomolecular computation frameworks. We will see that the Turing-
typical asymptotic slowdowns can be avoided while using a biomolecular com-
puting model. This provides an advance over both earlier work on automata-
based computation models (Turing machines, counter machines, etc.), and
over some other approaches to biomolecular computing

A number of contributions exist in this area; a non-exhaustive list:
[1,3,7,10,8,11,12,17,20,21,25,26,30,31,5,33] The list is rather mixed: Several of
the articles describe concrete finite-automaton-like computations, emphasis-
ing their realisation in actual biochemical laboratory contexts. As such their
emphasis is not on general computations but rather on showing feasibility of
specific computations in the laboratory. Articles [7,8,12,20,33] directly ad-
dress Turing completeness, but the algorithmic or programming aspects are
not easy to see.

How our approach is different: Contrary to several existing models,
our atomic notion (the “blob”) carries a fixed amount of data and has a fixed
number of possible interaction points with other blobs. Further, one fixed set
of rules specify how local collections of blobs are changed. In this sense, our
setup resembles specific cellular automata, e.g. Conway’s game of life where
only the initial state may vary. Contrary to cellular automata, there is both
programs and data are very clearly identified ensembles of blobs. Further,
we use a textual representation of programs closely resembling machine code
such that each line essentially corresponds to a single blob instruction with
parameters and bonds. The resulting code conforms closely to traditional
low-level programming concepts, including use of conditionals and jumps.

Outline of the paper: Section 3 introduces some notation to describe
program execution. Section 4 concerns the blob model of computation, with
an explicit program component. Section 5 relates the blob model to more
traditional computation models, and Section 6 concludes. Appendix A has
more discussion of computational completeness; and Appendix B shows how a
Turing machine may be simulated in the blob model – doable within a constant
slowdown because of the flexibility of blobs when considered as data structures.
Appendix C discusses the blob model’s realisability in 3-dimensional space.

4

Hartmann and Jones and Simonsen

3 Notations: direct or interpretive program execution

What do we mean by a program (roughly)? An answer: a set of instructions
that specify a series (or set) of actions on data. Actions are carried out when
the instructions are executed (activated,. . .) Further, a program is software,
not hardware. Thus a program should itself be a concrete data object that can
be replaced to specify different actions.

Direct program execution: write [[program]] to denote the meaning or
net effect of running program. A program meaning is often a function from
data input values to output values. Expressed symbolically:

[[program]](datain) = dataout

The program is activated (run, executed) by applying the semantic function
[[]]. The task of programming is, given a desired semantic meaning, to find a
program that computes it. Some mechanism is needed to execute program, i.e.,
to compute [[program]]. This can be done either by hardware or by software

Interpretive program execution: Here program is a passive data ob-
ject, but it is now activated by running the interpreter program. (Of course,
some mechanism will be needed to run the interpreter program, e.g., hard-
ware or software.) An equation similar to the above describes the effect of
interpretive execution:

[[interpreter]](program, datain) = dataout

Note that program is now used as data, and not as an active agent. Self-
interpretation is possible and useful [18]; the same value dataout can be com-
puted by:

[[interpreter]](interpreter, (program, datain)) = dataout

4 Programs in a biochemical world

Our goal is to express programs in a biochemical world. Programming as-
sumptions based on silicon hardware must be radically re-examined to fit into
a biochemical framework. We briefly summarize some qualitative differences.

• There can be no pointers to data: addresses, links, or unlimited list
pointers. In order to be acted upon, a data value must be physically adjacent
to some form of actuator. A biochemical form of adjacency: a chemical bond
between program and data.

• There can be no action at a distance: all effects must be achieved via
chains of local interactions. A biological analog: signaling.

5

Hartmann and Jones and Simonsen

• There can be no nonlocal control transfer, e.g., no analog to GO-
TOs or remote function/procedure calls. However some control loops are
acceptable, provided the “repeat point” is (physically) near the loop end.
A biological analog: a bond between different parts of the same program.

• On the other hand there exist available biochemical resources to tap,
i.e., free energy so actions can be carried out, e.g., to construct local data,
to change the program control point, or to add local bonds into an existing
data structure. Biological analogs: Brownian movement, ATP, oxygen.

The above constraints suggest how to structure a biologically feasible model
of computation. The main idea is to keep both program control point and
the current data inspection site always close to a focus point where all actions
occur. This can be done by continually shifting the program or the data, to
keep the active program and data always in reach of the focus. The picture
illustrates this idea for direct program execution.

Program p Data d'

&

$

%?
?

'

&

$

%?

?

APB: :ADB*

Running program p, i.e., computing [[p]](d)

= Focus point for control and data

(connects the APB and the ADB)

* = program-to-data bond

4.1 The Blob model

We take a very simplified view of a (macro-)molecule and its interactions, with
abstraction level similar to the Kappa model [12,7,14]. To avoid misleading
detail questions about real molecules we use the generic term “blob” for an
abstract molecule. A collection of blobs in the biological “soup” may be
interconnected by two-way bonds linking the individual blobs’ bond sites.

A program p is (by definition) a connected assembly of blobs. A data value
d is (also) by definition a connected assembly of blobs. At any moment during
execution, i.e., during computation of [[p]](d) we have:

• One blob in p is active, known as the active program blob or APB.

• One blob in d is active, known as the active data blob or ADB.

• A bond *, between the APB and the ADB, is linked at bond site 0 of each.

The data view of blobs: A blob has several bond sites and a few bits
of local storage limited to fixed, finite domains. Specifically, our model will
have four bond sites, identified by numbers 0, 1, 2, 3. At any instant during
execution, each can hold a bond – that is, a link to a (different) blob; or a
bond can hold ⊥, indicating unbound.

6

Hartmann and Jones and Simonsen

In addition each blob has 8 cargo bits of local storage containing Boolean
values, and also identified by numerical positions: 0, 1, 2, . . . , 7. When used
as program, the cargo bits contain an instruction (described below) plus an
activation bit, set to 1. When used as data, the activation bit must be 0, but
the remaining 7 bits may be used as the user wishes.

A blob with 3 bond sites bound and one unbound:

0
1⊥ 2

3&%
'$

Since bonds are in essence two-way pointers, they have a “fan-in” restriction:
a given bond site can contain at most one bond (if not ⊥).

The program view of blobs: Blob programs are sequential. There is no
structural distinction between blobs used as data and blobs used as program.
A single, fixed set of instructions is available for moving and rearranging the
cursors, and for testing or setting a cargo bit at the data cursor. Novelties
from a computer science viewpoint: there are no explicit program or data
addresses, just adjacent blobs. At any moment there is only a single program
cursor and a single data cursor, connected by a bond written * above.

Instructions, in general. The blob instructions correspond roughly to
“four-address code” for a von Neumann-style computer. An essential differ-
ence, though, is that a bond is a two-way link between two blobs, and is not an
address at all. It is not a pointer; there exists no address space as in a con-
ventional computer. A blob’s 4 bond sites contain links to other instructions,
or to data via the APB-ADB bond *.

For program execution, one of the 8 cargo bits is an “activation bit”; if 1,
it marks the instruction currently being executed. The remaining 7 cargo bits
are interpreted as a 7-bit instruction so there are 27 = 128 possible instructions
in all. An instruction has an operation code (around 15 possibilities), and 0, 1
or 2 parameters that identify single bits, or bond sites, or cargo bits in a blob.
See table below for current details. For example, SCG v c has 16 different
versions since v can be one of 2 values, and c can be one of 8 values.

Why exactly 4 bonds? The reason is that each instruction must have a bond
to its predecessor; further, a test or “jump” instruction will have two successor
bonds (true and false); and finally, there must be one bond to link the APB
and the ADB, i.e., the bond * between the currently executing instruction
and the currently visible data blob. The FIN instruction is a device to allow
a locally limited fan-in.

A specific instruction set (a bit arbitrary). The formal semantics of in-
struction execution are specified precisely by means of a set of 128 biochemical
reaction rules in the style of [12]. For brevity here, we just list the individual

7

Hartmann and Jones and Simonsen

instruction formats and their informal semantics. Notation: b is a 2-bit bond
site number, c is a 3-bit cargo site number, and v is a 1-bit value.

Numbering convention: the program APB and the data ADB are linked
by bond * between bond sites 0 of the APB and the ADB. An instruction’s
predecessor is linked to its bond site 1; bond site 2 is the instruction’s normal
successor; and bond site 3 is the alternative “false” successor, used by jump
instructions that test the value of a cargo bit or the presence of a bond.

Instruction Description Informal semantics (:=: is a two-way interchange)

SCG v c Set CarGo bit ADB.c := v; APB := APB.2

JCG c Jump CarGo bit if ADB.c = 0 then APB := APB.3 else APB := APB.2

JB b Jump Bond if ADB.b = ⊥ then APB := APB.3 else APB := APB.2

CHD b CHange Data ADB := ADB.b; APB := APB.2

INS b1 b2 INSert new bond new.b2 :=: ADB.b1;

new.b1 :=: ADB.b1.bs; APB := APB.2

Here “new” is a fresh blob, and “bs” is the bond site to

which ADB.b1 was bound before executing INS b1 b2.

SWL b1 b2 SWap Links ADB.b1 :=: ADB.b2.b1; APB := APB.2

SBS b1 b2 SWap Bond Sites ADB.b1 :=: ADB.b2; APB := APB.2

SWP1 b1 b2 Swap bs1 on linked ADB.b1.1 :=: ADB.b2.1; APB := APB.2

SWP3 b1 b2 Swap bs3 on linked ADB.b1.3 :=: ADB.b2.3; APB := APB.2

JN b1 b2 Join b1 to linked b2 ADB.b1 :=: ADB.b1.b2; APB := APB.2

DBS b Destination bond site Cargo bits 0,1 := bond site number of destination

for ADB.b

FIN Fan IN APB := APB.2 (bond site 3 is an alternative predecessor)

EXT EXiT program

An example in detail: the instruction SCG 1 5, as picture and as
a rewrite rule. SCG stands for “set cargo bit”. The effect of instruction
SCG 1 5 is to change the 5-th cargo bit of the ADB (active data blob) to 1.
First, an informal picture to show its effect:

�
�	APB APBa
1

�
�	⊥APB′ APB′a
0

*

�
�
�
S

�
�	?5 ADB ADB

⇒

�
�	⊥a
0

�
�	a1 ��
��

��
��

*�
�
�
S

�
�	15

Program Data Program Data

Note: the APB-ADB bond * has moved: Before execution, it connected APB
with ADB. After execution, it connects APB′ with ADB, where APB′ is the
next instruction: the successor (via bond S) of the previous APB. Also note
that the activation bit has changed: before, it was 1 at APB (indicating that
the APB was about to be executed) and 0 at ADB′. Afterwards, those two

8

Hartmann and Jones and Simonsen

bit values have been interchanged.

Syntax: Code the above instruction as an 8-bit string:

a︷︸︸︷
1

SCG︷︸︸︷
100

v︷︸︸︷
1

c︷︸︸︷
101 .

Here activation bit a = 1 indicates that this is the current instruction (about
to be executed). Operation code SCG (happens to be) encoded as 100; and
binary numbers are used to express the new value: v = 1, and the number of
the cargo bit to be set: c = 5.

The instruction also has four bond sites: ∗PS⊥. Here P is a bond to the
predecessor of instruction SCG 1 5, S is a bond to its successor, and bond site
3 is not used. The full instruction, with 8 cargo sites and four bond sites can
be written in form 2 : B[11001101](∗PS⊥).

Semantics: Instruction SCG 1 5 transforms the three blobs APB, APB′

and ADB as in the picture above. This can be expressed more exactly using a
rewrite rule as in [12] that takes three members of the blob species into three
modified ones. For brevity we write “ - ” at bond sites or cargo sites that are
not modified by the rule. Remark: the labels APB, ADB, etc. are not part of
the formalism, just labels added to help the reader.

APB︷ ︸︸ ︷
B[1 100 1 101](∗ -S -),

APB′︷ ︸︸ ︷
B[0 - - - - - - -](⊥S - -),

ADB︷ ︸︸ ︷
B[0 - - - -x - -](∗ - - -)

⇒

B[0 100 1 101](⊥ -S -)︸ ︷︷ ︸
APB

, B[1 - - - - - - -](⊥S - -)︸ ︷︷ ︸
APB′

, B[0 - - - - 1 - -](∗ - - -)︸ ︷︷ ︸
ADB

5 The blob world from a computer science perspective

First, an operational image: Any well-formed blob program, while running,
is a collection of program blobs that is adjacent to a collection of data blobs,
such that there is one critical bond (*) that links the APD and the ADB (the
active program blob and the active data blob). As the computation proceeds,
the program or data may move about, e.g., rotate as needed to keep their
contact points adjacent (the APB and the ADB). For now, we shall not worry
about the thermodynamic efficiency of moving arbitrarily large program and
data in this way; for most realistic programs, we assume them to be sufficiently
small (on the order of thousands of blobs) that energy considerations and blob
coherence are not an issue.

5.1 The blob language

It is certainly small: around 15 operation codes (for a total of 128 instructions
if parameters are included). Further, the set is irredundant in that no instruc-
tion’s effect can be achieved by a combination of other instructions. There are

2 B stands for a member of the blob “species”.

9

Hartmann and Jones and Simonsen

easy computational tasks that simply cannot be performed by any program
without, say, SCG or FIN.

There is certainly a close analogy between blob programs and a rudimen-
tary machine language. However a bond is not an address, but closer to a
two-way pointer. On the other hand, there is no address space, and no address
decoding hardware to move data to and from memory cells. An instruction
has an unusual format, with 8 single bits and 4 two-way bonds. There is no
fixed word size for data, there are no computed addresses, and there are no
registers or indirection.

The blob programs has some similarity to LISP or SCHEME, but: there
are no variables; there is no recursion; and bonds have a “fan-in” restriction.

5.2 What can be done in the blob world?

In principle the ideas presented and further directions are clearly expressible
and testable in Maude or another tool for implementing term rewriting sys-
tems, or the kappa-calculus [7,9,12,14]. Current work involves programming
a blob simulator. A prototype implementation has been made, with a func-
tioning self-interpreter.

The usual programming tasks (appending two lists, copying, etc.) can
be solved straightforwardly, albeit not very elegantly because of the low level
of blob code. Appendix B shows how to generate blob code from a Turing
machine, thus establishing Turing-completeness.

It seems possible to make an analogy between universality and self-reproduc-
tion that is tighter than seen in the von Neumann and other cellular automaton
approaches. It should now be clear that familiar Computer Science concepts
such as interpreters and compilers also make sense also at the biological level,
and hold the promise of becoming useful operational and utilitarian tools.

5.3 Self-interpretation in the blob world

The figure of Section 4 becomes even more interesting when a program is
executed interpretively, computing [[interpreter]](p, d).

Interpreter Program p�
�
�

?
�
�
�

?

??�
�
�

?

?

Data d

The interpreter’s data is p and d together

We have developed a “blob universal machine”, i.e., a self-interpreter for the
blob formalism that is closely analogous to Turing’s original universal machine.

10

Hartmann and Jones and Simonsen

6 Contributions of This Work

We have for the first time investigated the possibility of programmable bio-
level computation. The work sketched above, in particular the functioning of
blob code, can all be naturally expressed in the form of abstract biochemical
reaction rules. Further, we have shown molecular computation to be universal
in a very strong sense: not only can every computable function be computed
by a blob program, but this can all be done using a single, fixed, set of reaction
rules: it is not necessary to resort to constructing new rule sets (in essence,
new biochemical architectures) in order to solve new problems; it is enough
to write new programs.

The new framework provides Turing-completeness efficiently and without
asymptotic slowdowns. It seems possible to make a tighter analogy between
universality and self-reproduction than by the von Neumann and other cellular
automaton approaches.

It should be clear that familiar Computer Science concepts such as inter-
preters and compilers also make sense also at the biological level, and hold
the promise of becoming useful operational and utilitarian tools.

References

[1] L. M. Adleman. On constructing a molecular computer. In DIMACS: series in Discrete
Mathematics and Theoretical Computer Science, pages 1–21. American Mathematical Society,
1996.

[2] R. Backofen and P. Clote. Evolution as a computational engine. In Proceedings of the Annual
Conference of the European Association for Computer Science Logic, pages 35–55. Springer-
Verlag, 1996.

[3] D. Beaver. Computing with DNA. Journal of Computational Biology, 2(1):1–7, 1995.

[4] Y. Benenson. Biocomputers: from test tubes to live cells. Molecular BioSystems, 5(7):675–685,
2009.

[5] Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro. DNA molecule provides a
computing machine with both data and fuel. In Proc Natl Acad Sci U S A, volume 100 of
Lecture Notes in Computer Science, pages 2191–2196, 2003.

[6] L. Cardelli and G. Zavattaro. On the computational power of biochemistry. In AB ’08:
Proceedings of the 3rd international conference on Algebraic Biology, pages 65–80, Berlin,
Heidelberg, 2008. Springer-Verlag.

[7] L. Cardelli and G. Zavattaro. Turing universality of the biochemical ground form.
Mathematical Structures in Computer Science, 19, 2009.

[8] P. Chapman. Life universal computer. http://www.igblan.free-online.co.uk/igblan/ca/,
(November), 2002.

[9] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L. Talcott,
editors. All About Maude - A High-Performance Logical Framework, How to Specify, Program
and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes in Computer Science.
Springer, 2007.

[10] A. Danchin. Bacteria as computers making computers. FEMS Microbiology Reviews, 33(1):3
– 26, 2008.

11

Hartmann and Jones and Simonsen

[11] V. Danos, J. Feret, W. Fontana, and J. Krivine. Abstract interpretation of cellular signalling
networks. In VMCAI, volume 4905 of VMCAI, Lecture Notes in Computer Science, pages
83–97, 2008.

[12] V. Danos and C. Laneve. Formal molecular biology. Theor. Comp. Science, 325:69 – 110,
2004.

[13] P. Degano and R. Gorrieri, editors. Computational Methods in Systems Biology, 7th
International Conference, CMSB 2009, Bologna, Italy, August 31-September 1, 2009.
Proceedings, volume 5688 of Lecture Notes in Computer Science. Springer, 2009.

[14] G. Delzanno, C. D. Giusto, M. Gabbrielli, C. Laneve, and G. Zavattaro. The kappa-lattice:
Decidability boundaries for qualitative analysis in biological languages. In Degano and Gorrieri
[13], pages 158–172.

[15] M. Gardner. Mathematical recreations. Scientific American, October 1970.

[16] M. L. Guerriero, D. Prandi, C. Priami, and P. Quaglia. Process calculi abstractions for biology.
Technical report, University of Trento, Italy, Jan. 01, 2006.

[17] M. Hagiya. Designing chemical and biological systems. New Generation Comput., 26(3):295,
2008.

[18] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.
Prentice Hall International Series in Computer Science. Prentice Hall, 1993.

[19] N. D. Jones. Computability and complexity: from a programming perspective. MIT Press,
Cambridge, MA, USA, 1997.

[20] L. Kari. Biological computation: How does nature compute? Technical report, University of
Western Ontario, 2009.

[21] L. Kari and G. Rozenberg. The many facets of natural computing. Commun. ACM, 51(10):72–
83, 2008.

[22] M. Minsky. Computation: finite and infinite machines. Prentice Hall, 1967.

[23] C. L. Nehaniv. Asynchronous automata networks can emulate any synchronous automata
network. International Journal of Algebra and Computation, 14(5-6):719–739, 2004.

[24] T. Ran, S. Kaplan, and E. Shapiro. Molecular implementation of simple logic programs. Nat
Nano, 4(10):642–648, Oct 2009.

[25] E. Shapiro. Mechanical Turing machine: Blueprint for a biomolecular computer. Technical
report, Weizmann Institute of Science, 1999.

[26] E. Shapiro and Y. Benenson. Bringing DNA computers to life. Scientific American, 294:44–51,
2006.

[27] C. Talcott. Pathway logic. In Formal Methods for Computational Systems Biology, volume
5016 of LNCS, pages 21–53. Springer, 2008. 8th International School on Formal Methods for
the Design of Computer, Communication, and Software Systems.

[28] A. Turing. On computable numbers with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 42(2):230–265, 1936-7.

[29] J. von Neumann and A. W. Burks. Theory of Self-Reproducing Automata. Univ. Illinois Press,
1966.

[30] E. Winfree. Toward molecular programming with DNA. SIGOPS Oper. Syst. Rev., 42(2):1–1,
2008.

[31] E. Winfree, X. Yang, and N. C. Seeman. Universal computation via self-assembly of DNA:
Some theory and experiments. In DNA Based Computers II, volume 44 of DIMACS, pages
191–213. American Mathematical Society, 1996.

[32] S. Wolfram. A New Kind of Science. Wolfram Media, January 2002.

[33] P. Yin, A. J. Turberfield, and J. H. Reif. Design of an autonomous dna nanomechanical device
capable of universal computation and universal translational motion. In Tenth International
Meeting on DNA Based Computers (DNA10), volume 3384 of Lecture Notes in Computer
Science, pages 426–444, 2005.

12

Hartmann and Jones and Simonsen

A More on Turing completeness

How to show Turing completeness of a computation framework. This
is typically shown by reduction from another problem already known to be
Turing complete. Notation: let L and M denote languages (biological, pro-
gramming, whatever), and let [[p]]L denote the result of executing L-program
p, for example an input-output function computed by p. Then we can say
that language M is at least as powerful as L if

∀p ∈ L−programs ∃q ∈M−programs ([[p]]L = [[q]]M)

A popular choice is to let L be some very small Turing complete language,
for instance Minsky register machines or two-counter machines (2CM). The
next step is to let M be a biomolecular system of the sort being studied. The
technical trick is to argue that, given any L-instance of (say) a 2CM program,
it is possible to construct a biomolecular M -system that faithfully simulates
the given 2CM.

Oddly enough, Turing completeness is not often used to show that certain
problems can be solved by M -programs; but rather only to show that, say, the
equivalence or termination problems of M-programs are algorithmically unde-
cidable because they are undecidable for L, and the properties are preserved
under the construction. This discussion brings up a central issue:

Simulation as opposed to interpretation. Arguments to show Turing
completeness are (as just described) usually by simulation: for each problem
instance (say a 2CM) one somehow constructs a biomolecular system such that
. . . (the system in some sense solves the problem). However, in many papers
for each problem instance the construction of the simulator is done by hand,
e.g., by the author writing the article. In effect the existential quantifier in
∀p∃q([[p]]L = [[q]]M) is computed by hand. This phenomenon is clearly visible in
papers on cellular computation models: completeness is shown by simulation
rather than by interpretation.

In contrast, Turing’s original “Universal machine” simulates by means of
interpretation: a stronger form of imitation, in which the existential quantifier
is realised by machine. Turing’s “Universal machine” is capable of executing
an arbitrary Turing machine program, once that program has been written
down on the universal machine’s tape in the correct format, and its input data
has been provided. Our research follows the same line, applied in a biological
context: we show that simulation can be done by general interpretation, rather
than by one-problem-at-a-time constructions.

Self-interpretation without asymptotic slowdown. The blob self-
interpreter overcomes a limitation that seems built-in to the Turing model.

13

Hartmann and Jones and Simonsen

Analysis of its running time reveals that the time taken to interpret one blob
instruction is bounded by a constant that is independent of the program being
interpreted. Intuitively, there are two reasons for this: First, there are no
variables, pointers, or other features that add program-dependent amounts of
time to the central self-interpretion loop. Second, the fact that every transfer
of control in the interpreted program is to an adjacent program blob means
that no program-dependent amount of time is spent on fetching the next
instruction.

One consequence is that constant time factors do matter: the “linear hi-
erarchy” results developed in [19] (Section 19.3 for the I language) also hold
for the blob language. (The linear hierarchy result sounds intuitively obvious
and natural, but in fact does not hold for many of the traditional models of
computation, in particular does not hold for Turing machines with arbitrarily
large alphabets or number of tapes.)

B Turing completeness of the blob model

We prove that any one-tape Turing machine with a single read/write head
may be simulated by a blob program. The tape contents are always finite and
enclosed between a left endmarker � and a right endmarker �.

B.1 Turing machine syntax

A Turing machine is a tuple Z = ({0, 1}, Q, δ, qstart, qhalt). The tape and input
alphabet are {0, 1}. (Blanks are not included, but may be encoded suitably
by bits.) Q is a finite set of control states including distinct start and halting
states qstart, qhalt ∈ Q. The transition function has type

δ : {0, 1,�,�} ×Q→ A×Q

where an action is any A ∈ A = {L,R,W0,W1}. Notation: we write a Turing
machine instruction as

δ(q, b)→ (A, r)

meaning “In state q, reading bit b, perform action A and move to state r”. Ac-
tions L,R,W0,W1 mean informally “move Left, move Right, Write 0, Write
1”, respectively. For simplicity we assume that Turing machines may not both
move and write on the tape in the same atomic step. (A “write-and-move”
action may easily be implemented using two states and two steps.)

We also assume that every Turing machine satisfies the following consis-
tency assumptions :

• If δ(q,�)→ (A, r) is an instruction, then A ∈ {R} (i.e. the machine never
moves to the left of the left endmarker and cannot overwrite the endmarker).

14

Hartmann and Jones and Simonsen

• If δ(q,�) → (A, r) then A ∈ {L,W0,W1} (i.e. the machine never moves
to the right of the right endmarker, but can overwrite the endmarker).

Definition B.1 Let M be a Turing machine. The state graph of M is the
directed graph where the nodes are the states of M and there is a directed
edge from q to r annotated (b, A) if there is an instruction δ(q, b)→ (A, r).

B.2 Turing machine semantics

A total state has the form
q

� b1 . . . bi . . . bn �

where the bj are tape symbols, and q is a control state. We define the tape
contents of the machine to be everything enclosed between � and �.

The Turing machine defines a one-step transition relation between total
states in the expected way (not spelled out here). Tapes may only grow
to the right, not the left. We assume that if there is an instruction of the
form δ(q,�) → (W0, r) or δ(q,�) → (W1, r) (i.e. the right endmarker is
overwritten), then the tape is automatically extended to the right with a new
endmarker to the immediate right of the previous endmarker.

Remark: the tape contents will always be finite after a finite number of
computation steps.

Input/Output : A Turing machine Z computes a partial function

[[Z]] : {0, 1}∗ ⇀ {0, 1}∗

• Input : The machine is in its start state with the tape head on the tape cell
to the immediate right of the left endmarker �. The input is the contents
of the tape.

• Output : The machine is in its halt state. The output is the contents of the
tape.

B.3 Compiling a Turing machine into a blob program

We describe a way to compile any Turing machine Z = ({0, 1}, Q, δ, qstart, qhalt)
into blob program code code(Z) that simulates it. Compilation of a Turing
machine into blob code is as follows:

• Generate blob code for each instruction δ(q, b)→ (A, r).

• Collect blob code for all the states into a single blob program.

Before describing the compilation algorithm, we explain how the blob code
realises a step-by-step simulation of the Turing machine Z.

15

Hartmann and Jones and Simonsen

B.3.1 Turing machine representation by blobs

At any time t in its computation, the Turing machine’s tape b1 . . . bi . . . bn
will represented by a finite sequence B1 . . . Bi . . . Bn of blobs. If at time t the
Turing machine head is scanning tape symbol bi, the active data blob will be
the blob Bi. Arrangement: each Bi is linked to its predecessor via bond site
1, and to its successor via bond site 2. The Turing machine’s control state
will correspond to the active program blob in code(Z).

The cargo bits of the “data blobs” are used to indicate the contents of the
the tape cell:

• Cargo bit 0 is unused in the simulation.

• Cargo bit 1 is used to hold the bit occupied by the tape cell (if the blob
represents either � or �, the contents of cargo bit 1 is irrelevant).

• Cargo bit 2 is ’1’ iff the blob represents the left endmarker �.

• Cargo bit 3 is ’1’ iff the blob represents the right endmarker �.

B.3.2 Syntax of the generated code

We will write the generated blob target program as straightline code with
labels. For every instruction, the “next” blob code instruction to be executed
is the one linked to the active program blob by the latter’s “successor” bond
site 2. Thus, in

SCG 0 5

EXT

the blob corresponding to SCG 0 5 has its bond site 2 linked to the “prede-
cessor” bond site 1 of the blob corresponding to EXT.

B.3.3 Code generation for each state

Let q 6= qhalt be a state. The four possible kinds of transitions on state q are:

δ(q, 0) → (A0, q0)

δ(q, 1) → (A1, q1)

δ(q,�) → (AL, qL)

δ(q,�) → (AR, qR)

where q0, q1, qL, qR ∈ Q, A0, A1 ∈ {L,R,W0,W1}, andAL,AR ∈ {L,W0,W1}.
We generate code for q as follows. For typographical reasons, � = EL and

� = ER. The action code notations [A0] etc, is explained below, as is the
label notation <label>. The initial FIN code may be safely ignored on the
first reading.

16

Hartmann and Jones and Simonsen

Generate i-1 FIN // Assume program port 2 is always "next" operation
// Each FIN is labeled as noted below
// The last FIN is bound (on its bond site 2) to
// the blob labeled ’Q’ below.

Q: JCG 2 QLE // If 1, We’re at left tape end
// By convention, bond site 3 of the APB is
// bound to the blob labeled QLE

JCG 3 QRE // If 1, We’re at right tape end
JCG 1 Q1 // We’re not at any end. If ’0’ is scanned, move along

// (on bond site 2),
// otherwise a ’1’ is scanned, jump to Q1
// (on bond site 3)

[A0] // Insert code for action A0
FIN qA0q0 // Go to appropriate fanin before q0 (on bond site 2)

Q1: [A1] // Insert code for action A1
FIN qA1q1 // Go to appropriate fanin before q1 (on bond site 2)

QLE: [AL] // Insert code for AL
FIN qELALqL // Go to appropriate fanin before qL (on bond site 2)

QRE: R[AR] // Insert code for AR (with the R[]-function)
FIN ERARqR // Go to appropriate fanin before qR (on bond site 2)

// Code for q end

Code for qhalt:
Generate i-1 FIN // Assume program port 2 is "next" operation always

// Each FIN is labeled as noted below
// The last FIN is bound (on its bond site 2) to
// the blob labeled ’Qh’ below.

Qh: EXT

The JCG instructions test the data blob Bi to see which of the four pos-
sible kinds of transitions should be applied. Codes [A0], [A1], [AL], R[AR]
simulate the effect of the transition, and the FIN after each in effect does a
“go to” to the blob code for the Turing machine’s next state. (This is made
trickier by the fan-in restrictions, see Section B.3.7 below.)

B.3.4 Two auxiliary functions

We use two auxiliary functions to generate code:

[] : {L,R,W0,W1} −→ blobcode

and
R[] : {L,W0,W1} −→ blobcode

Function [] is used for code generation on arbitrary tape cells, and R[]

for code generation when the Turing machine head is on the right end marker
where some housekeeping chores must be performed due to tape extension.

B.3.5 Code generation for instructions not affecting the right end of the tape

[W0]

17

Hartmann and Jones and Simonsen

SCG 0 1 // Set tape cell content to 0

[W1]

SCG 1 1 // Set tape cell content to 1

[L]

CHD 1 // Set ADB to previous blob (move tape left)

[R]

CHD 2 // Set ADB to next blob (move tape right)

B.3.6 Code generation for instructions that can extend the tape

R[W0]

SCG 0 3 // Current blob is no longer at right tape end

INS 2 1 // Insert new blob at bond port 2 on ADB

// (new tape cell). New blob is bound at site 1.

CHD 2 // Change ADB to new blob (move head right)

SCG 1 3 // New blob is at the right end of the tape

CHD 1 // Change ADB to original blob (move head left)

SCG 0 1 // Write a ’0’ in the tape cell (as per W0).

R[W1]

SCG 0 3 // Current blob is no longer at right tape end

INS 2 1 // Insert new blob at bond port 2 on ADB

// (new tape cell). New blob is bound at site 1

CHD 2 // Change ADB to new blob (move head right)

SCG 1 3 // New blob is right tape end

CHD 1 // Change ADB to original blob (move head left)

SCG 1 1 // Write a ’1’ in the tape cell (as per W1)

R[L]

R[L] = [L] // Move to the left

// TM does not move right at right tape end.

B.3.7 Control flow in the generated blob code

A technical problem in code generation. We now explain the mean-
ing of the somewhat cryptical comments such as “Go to appropriate fanin

18

Hartmann and Jones and Simonsen

before q1” in Section B.3.3, and notations such as qA0q0.

The problem: while a pointer-oriented language allows an unbounded num-
ber of pointers into the same memory cell, this is not true for the blob struc-
tures (the reason is that a bond is intended to model a chemical connection
between two molecules). This is a “fan-in” restriction on program (and data)
syntax.

A consequence: blob program code may not contain more than one control
transfer to a given instruction, unless this is done by a bond site different from
the usual “predecessor” site 1. The purpose of the instruction FIN is to allow
two entry points: one as usual by bond site 1, and a second by bond site 3.

The initial FIN code generated of Section B.3.3. This concerns
the entry points into blob code for a Turing state q. Let i be the number of
directed edges to q in the state graph (i.e., the number of “go to’s” to q).

If i ≤ 1, we generate no fanin blobs.

Otherwise, we generate i − 1 fanin blobs before the code generated for q;
these handle the i transitions to q. The blobs bound to the fanin nodes occur
in the code generated for other states (perhaps from q to itself). For each
transition δ(q′, b) → (A, q), a blob in the code generated for q′ is bound to a
single fanin blob for q. The fanin blob generated above, before the generated
code for state q, is labeled by q’bAq.

C Dimensionality limitations

Limitation to three dimensions. The physical world imposes a dimension-
ality requirement we have not yet addressed: data and program code cannot
be packed with a density greater than that allowed by three-dimensional Eu-
clidean space. The idea of a biologically plausible computing model that must
work in 3-space provokes several interesting questions.

Realisability in 3-space: In the blob model, following a chain of k
bonds from the active data blob (at any time in a computation) should give
access to at most O(k3) blobs. This is not guaranteed by the blob model as
presented above; indeed, a blob program could build a complete 3-ary tree
of depth k and containing 3k blobs at distance k. This structure could not
be represented in 3-space with our restrictions, and still have the intended
semantic structure: that any two blobs linked by a bond should be adjacent
in the biological “soup”.

On dimensional limits in other computation models. The usual
Turing machine has a fixed number of 1-dimensional tapes (though k-dimensional
versions exist, for fixed k). Cellular automata as in [29,8,32] have a fixed 2-
dimensional architecture. Dimensionality questions are not relevant to Minsky-
style machines with a fixed number of registers, e.g., the two-counter machine.

Machines that allow computed addresses and indirection, e.g., the ram,

19

Hartmann and Jones and Simonsen

rasp, etc., have no dimensionality limitations at all, just as in the “raw” blob
model: traversing a chain of k bonds from one memory can give access to a
number of cells exponential in k (or higher if indexing is allowed).

3D complexity classes? The well-known and well-developed Turing-
based computational complexity theory starts by restricted programs’ running
time and/or space. An possible analogy would be to limit the dimensionality
of the data structures that a program may build during a computation.

Pursuing the analogy, the much-studied complexity class ptime is quite
large, indeed so large that dimensionality makes no difference: on any tra-
ditional model where data dimensionality makes sense, it would be an easy
exercise to show that ptime = ptime3D. What if instead we study the class
lintime of problems solvable in linear time (as a function of input size)? Alas,
this smaller, realistically motivated class is not very robust for Turing ma-
chines, as small differences in Turing models can give different versions of
lintime (Sections 18, 19, 25.6 in [19]). It seems likely though that the lintime

class for blob machines is considerably more robust.

Conjecture: lintime3D (lintime on the blob model.

Another interesting question: does self-interpretation cause a need
for higher dimensionality? We conjecture that this is not so for any one
fixed interpreted program; but that diagonalisation constructions can force
the necessary dimensionality to increase. This appears to be an excellent
direction for future work.

20

Hartmann and Jones and Simonsen

Contents

1 Biochemical universality and programming 1

2 Relation to other computational frameworks 2

3 Notations: direct or interpretive program execution 5

4 Programs in a biochemical world 5

4.1 The Blob model 6

5 The blob world from a computer science perspective 9

5.1 The blob language 9

5.2 What can be done in the blob world? 10

5.3 Self-interpretation in the blob world 10

6 Contributions of This Work 11

References 11

A More on Turing completeness 13

B Turing completeness of the blob model 14

B.1 Turing machine syntax 14

B.2 Turing machine semantics 15

B.3 Compiling a Turing machine into a blob program 15

B.3.1 Turing machine representation by blobs 16

B.3.2 Syntax of the generated code 16

B.3.3 Code generation for each state 16

B.3.4 Two auxiliary functions 17

B.3.5 Code generation for instructions not affecting the right end
of the tape 17

B.3.6 Code generation for instructions that can extend the tape 18

B.3.7 Control flow in the generated blob code 18

C Dimensionality limitations 19

21

	Biochemical universality and programming
	Relation to other computational frameworks
	Notations: direct or interpretive program execution
	Programs in a biochemical world
	The Blob model

	The blob world from a computer science perspective
	The blob language
	What can be done in the blob world?
	Self-interpretation in the blob world

	Contributions of This Work
	References
	More on Turing completeness
	Turing completeness of the blob model
	Turing machine syntax
	Turing machine semantics
	Compiling a Turing machine into a blob program
	Turing machine representation by blobs
	Syntax of the generated code
	Code generation for each state
	Two auxiliary functions
	Code generation for instructions not affecting the right end of the tape
	Code generation for instructions that can extend the tape
	Control flow in the generated blob code

	Dimensionality limitations

